# 图像的透视校正 import cv2 import numpy as np import math # 读入待处理的图像并显示 img = cv2.imread("./data/shu3.jpg") cv2.imshow("1_yuanshituxima", img) # 灰度化 并显示 img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) cv2.imshow("2.huidu", img_gray) # 模糊化处理 去掉过小的细节 blurred = cv2.GaussianBlur(img_gray, (5, 5), 0) cv2.imshow("3.mohu", blurred) # 膨胀-抖小的细节合并 dilate = cv2.dilate(blurred, (3, 3)) cv2.imshow("4_pengzhang", dilate) # 边缘提取 canny = cv2.Canny(dilate, 50, 240) cv2.imshow("5_bianyuntiqu", canny) # 轮廓检测 imag, cnts, hie = cv2.findContours(canny.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 绘制轮廓 img_cnt = cv2.drawContours(img.copy(), cnts, -1, (0, 0, 255), 2) cv2.imshow("6_lunkuxian", img_cnt) docCnt = None # 定义一个空数组 # 计算面积, 排序 if len(cnts) > 0: cnts = sorted(cnts, key=cv2.contourArea, reverse=True) for c in cnts: peri = cv2.arcLength(c, True) # 求出该轮廓线的周长 approx = cv2.approxPolyDP(c, 0.02 * peri, True) # 轮廓线的多边形组合 if len(approx) == 4: # 找到边为4的多边形 docCnt = approx # 将找到的多边形赋值给另外一个变量docCnt break # 绘制找到的四边形的点,画圆 points = [] for peak in docCnt: peak = peak[0] print("peak:", peak) cv2.circle(img_cnt, tuple(peak), 10, (0, 255, 0), 2) # 圆所在的图像, 圆心, 半径, 颜色, 线宽 points.append(peak) cv2.imshow("7-sibianxingdingdian", img_cnt) print("points:", points) # 校正 # 原纸张逆时针方向的4个角点 src = np.float32([points[0], points[1], points[2], points[3]]) # 根据勾股定理计算宽度,再做透视变换 h = int(math.sqrt((points[1][0] - points[0][0]) ** 2 + (points[1][1] - points[0][1]) ** 2)) # 高度 w = int(math.sqrt((points[2][0] - points[1][0]) ** 2 + (points[2][1] - points[1][1]) ** 2)) # 宽度 print("w, h", w, h) dst = np.float32([[0, 0], [0, h], [w, h], [w, 0]]) M = cv2.getPerspectiveTransform(src, dst) # 生成透视矩阵 result = cv2.warpPerspective(img.copy(), M, (w, h)) # 透视变换 cv2.imshow("8_leguo", result) cv2.waitKey() cv2.destroyAllWindows()