71 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			71 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# 图像的透视校正
 | 
						|
import cv2
 | 
						|
import numpy as np
 | 
						|
import math
 | 
						|
 | 
						|
# 读入待处理的图像并显示
 | 
						|
img = cv2.imread("./data/shu3.jpg")
 | 
						|
cv2.imshow("1_yuanshituxima", img)
 | 
						|
 | 
						|
# 灰度化 并显示
 | 
						|
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 | 
						|
cv2.imshow("2.huidu", img_gray)
 | 
						|
 | 
						|
# 模糊化处理 去掉过小的细节
 | 
						|
blurred = cv2.GaussianBlur(img_gray, (5, 5), 0)
 | 
						|
cv2.imshow("3.mohu", blurred)
 | 
						|
 | 
						|
# 膨胀-抖小的细节合并
 | 
						|
dilate = cv2.dilate(blurred, (3, 3))
 | 
						|
cv2.imshow("4_pengzhang", dilate)
 | 
						|
 | 
						|
# 边缘提取
 | 
						|
canny = cv2.Canny(dilate, 50, 240)
 | 
						|
cv2.imshow("5_bianyuntiqu", canny)
 | 
						|
 | 
						|
# 轮廓检测
 | 
						|
imag, cnts, hie = cv2.findContours(canny.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 | 
						|
 | 
						|
# 绘制轮廓
 | 
						|
img_cnt = cv2.drawContours(img.copy(), cnts, -1, (0, 0, 255), 2)
 | 
						|
cv2.imshow("6_lunkuxian", img_cnt)
 | 
						|
 | 
						|
docCnt = None  # 定义一个空数组
 | 
						|
 | 
						|
# 计算面积, 排序
 | 
						|
if len(cnts) > 0:
 | 
						|
    cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
 | 
						|
    for c in cnts:
 | 
						|
        peri = cv2.arcLength(c, True)  # 求出该轮廓线的周长
 | 
						|
        approx = cv2.approxPolyDP(c, 0.02 * peri, True)  # 轮廓线的多边形组合
 | 
						|
        if len(approx) == 4:  # 找到边为4的多边形
 | 
						|
            docCnt = approx  # 将找到的多边形赋值给另外一个变量docCnt
 | 
						|
            break
 | 
						|
 | 
						|
# 绘制找到的四边形的点,画圆
 | 
						|
points = []
 | 
						|
for peak in docCnt:
 | 
						|
    peak = peak[0]
 | 
						|
    print("peak:", peak)
 | 
						|
    cv2.circle(img_cnt, tuple(peak), 10, (0, 255, 0), 2)  # 圆所在的图像, 圆心, 半径, 颜色, 线宽
 | 
						|
    points.append(peak)
 | 
						|
 | 
						|
cv2.imshow("7-sibianxingdingdian", img_cnt)
 | 
						|
print("points:", points)
 | 
						|
 | 
						|
# 校正
 | 
						|
# 原纸张逆时针方向的4个角点
 | 
						|
src = np.float32([points[0], points[1], points[2], points[3]])
 | 
						|
 | 
						|
# 根据勾股定理计算宽度,再做透视变换
 | 
						|
h = int(math.sqrt((points[1][0] - points[0][0]) ** 2 + (points[1][1] - points[0][1]) ** 2))  # 高度
 | 
						|
w = int(math.sqrt((points[2][0] - points[1][0]) ** 2 + (points[2][1] - points[1][1]) ** 2))  # 宽度
 | 
						|
print("w, h", w, h)
 | 
						|
 | 
						|
dst = np.float32([[0, 0], [0, h], [w, h], [w, 0]])
 | 
						|
M = cv2.getPerspectiveTransform(src, dst)  # 生成透视矩阵
 | 
						|
result = cv2.warpPerspective(img.copy(), M, (w, h))  # 透视变换
 | 
						|
 | 
						|
cv2.imshow("8_leguo", result)
 | 
						|
cv2.waitKey()
 | 
						|
cv2.destroyAllWindows() |