import os import torch # 路径配置 DATA_ROOT = "./data" # 数据根目录,包含000,001等子文件夹 OUTPUT_DIR = "./output" MODEL_SAVE_DIR = os.path.join(OUTPUT_DIR, "models") # 确保目录存在 os.makedirs(MODEL_SAVE_DIR, exist_ok=True) # 数据配置 IMG_SIZE = 224 # 调整图像大小 BATCH_SIZE = 32 NUM_WORKERS = 4 TRAIN_RATIO = 0.8 VAL_RATIO = 0.2 # 样本数量控制 MAX_SAMPLES_PER_CLASS = 1000 # 每个类别最多读取的样本数 NORMAL_CLASS = "000" # 正常类别的文件夹名 ABNORMAL_CLASSES = ["001", "010", "011", "100", "101", "110", "111"] # 异常类别的文件夹名 # 模型配置 HIDDEN_DIM = 768 NUM_HEADS = 12 NUM_LAYERS = 6 DROPOUT = 0.1 NUM_CLASSES = 2 # 二分类:正常 vs 异常 # 训练配置 DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") LEARNING_RATE = 1e-4 WEIGHT_DECAY = 1e-5 NUM_EPOCHS = 50 EARLY_STOPPING_PATIENCE = 10