leukemia/models/image_models.py

78 lines
2.6 KiB
Python

import torch
import torch.nn as nn
from torch.nn import TransformerEncoder, TransformerEncoderLayer
import torch.nn.functional as F
import torchvision.models as models
class PatchEmbedding(nn.Module):
"""将图像分割为patch并进行embedding"""
def __init__(self, img_size=224, patch_size=16, in_channels=3, embed_dim=768):
super().__init__()
self.img_size = img_size
self.patch_size = patch_size
self.n_patches = (img_size // patch_size) ** 2
self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
# x: [B, C, H, W]
batch_size = x.shape[0]
x = self.proj(x) # [B, E, H/P, W/P]
x = x.flatten(2) # [B, E, (H/P)*(W/P)]
x = x.transpose(1, 2) # [B, (H/P)*(W/P), E]
return x
class VisionTransformer(nn.Module):
"""基于Transformer的图像特征提取模型"""
def __init__(self, img_size=224, patch_size=16, in_channels=3,
embed_dim=768, depth=6, num_heads=12, dropout=0.1):
super().__init__()
# Patch Embedding
self.patch_embed = PatchEmbedding(img_size, patch_size, in_channels, embed_dim)
self.n_patches = self.patch_embed.n_patches
# Position Embedding
self.pos_embed = nn.Parameter(torch.zeros(1, self.n_patches + 1, embed_dim))
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
# Transformer Encoder
encoder_layer = TransformerEncoderLayer(
d_model=embed_dim,
nhead=num_heads,
dim_feedforward=embed_dim * 4,
dropout=dropout,
activation='gelu',
batch_first=True
)
self.transformer = TransformerEncoder(encoder_layer, num_layers=depth)
# 层归一化
self.norm = nn.LayerNorm(embed_dim)
# 初始化
nn.init.trunc_normal_(self.pos_embed, std=0.02)
nn.init.trunc_normal_(self.cls_token, std=0.02)
def forward(self, x):
# x: [B, C, H, W]
batch_size = x.shape[0]
# Patch Embedding: [B, N, E]
x = self.patch_embed(x)
# 添加CLS token
cls_token = self.cls_token.expand(batch_size, -1, -1) # [B, 1, E]
x = torch.cat([cls_token, x], dim=1) # [B, N+1, E]
# 添加Position Embedding
x = x + self.pos_embed
# Transformer Encoder
x = self.transformer(x)
# 提取CLS token作为整个图像的特征
x = x[:, 0] # [B, E]
return x