first commit

This commit is contained in:
lotus 2024-12-05 19:45:11 +08:00
commit 92226ec4b1
5 changed files with 791 additions and 0 deletions

251
command_interpreter.py Normal file
View File

@ -0,0 +1,251 @@
import re
from typing import Dict, Any, Callable
from process_management import Process, ProcessState
from resource_management import ResourceType
from memory_management import MemoryAllocationStrategy
class CommandInterpreter:
"""
解释并执行模拟操作系统的命令
"""
def __init__(self):
# 命令映射
self.commands: Dict[str, Callable] = {
'ALLOCATE': self.allocate_memory,
'REQUEST_RESOURCE': self.request_resource,
'RELEASE_RESOURCE': self.release_resource,
'CREATE_FILE': self.create_file,
'DELETE_FILE': self.delete_file,
'READ_FILE': self.read_file,
'WRITE_FILE': self.write_file,
'DISK_SEEK': self.optimize_disk_seek,
}
def execute_command(self, command: str, process: Process, os_system: Any):
"""
解析并执行给定进程的命令
:param command: 要执行的命令字符串
:param process: 执行命令的进程
:param os_system: 操作系统引用
"""
# 将命令分词
tokens = command.strip().split()
if not tokens:
return
# 提取命令和参数
cmd = tokens[0].upper()
args = tokens[1:]
# 查找并执行相应的命令
if cmd in self.commands:
try:
self.commands[cmd](process, os_system, *args)
except Exception as e:
print(f"执行命令 {cmd} 时出错: {e}")
else:
print(f"未知命令: {cmd}")
def allocate_memory(self, process: Process, os_system: Any, size: str = None, strategy: str = None):
"""
为进程分配内存
:param process: 请求内存分配的进程
:param os_system: 操作系统引用
:param size: 要分配的内存大小
:param strategy: 内存分配策略
"""
# 将大小转换为整数
try:
memory_size = int(size or 1024) # 如果未指定默认1KB
except ValueError:
memory_size = 1024
# 确定分配策略
if strategy:
strategy = strategy.lower()
allocation_strategies = {
'first': MemoryAllocationStrategy.FIRST_FIT,
'best': MemoryAllocationStrategy.BEST_FIT,
'worst': MemoryAllocationStrategy.WORST_FIT
}
os_system.memory_manager.allocation_strategy = allocation_strategies.get(
strategy,
MemoryAllocationStrategy.FIRST_FIT
)
# 分配内存
start_address = os_system.memory_manager.allocate_memory(
process.pid,
memory_size
)
if start_address is not None:
print(f"进程 {process.pid} 分配了 {memory_size} 字节,地址为 {start_address}")
else:
print(f"进程 {process.pid} 内存分配失败")
def request_resource(self, process: Process, os_system: Any, resource_type: str):
"""
请求系统资源
:param process: 请求资源的进程
:param os_system: 操作系统引用
:param resource_type: 要请求的资源类型
"""
# 将字符串映射到ResourceType
resource_types = {
'PRINTER': ResourceType.PRINTER,
'DISK': ResourceType.DISK,
'NETWORK': ResourceType.NETWORK
}
# 验证并请求资源
try:
res_type = resource_types[resource_type.upper()]
success = os_system.resource_manager.request_resource(process.pid, res_type)
if success:
print(f"进程 {process.pid} 成功分配了 {resource_type}")
else:
print(f"进程 {process.pid} 资源 {resource_type} 分配失败")
except KeyError:
print(f"无效的资源类型: {resource_type}")
def release_resource(self, process: Process, os_system: Any, resource_type: str):
"""
释放先前分配的资源
:param process: 释放资源的进程
:param os_system: 操作系统引用
:param resource_type: 要释放的资源类型
"""
# 将字符串映射到ResourceType
resource_types = {
'PRINTER': ResourceType.PRINTER,
'DISK': ResourceType.DISK,
'NETWORK': ResourceType.NETWORK
}
try:
res_type = resource_types[resource_type.upper()]
# 查找并释放分配给该进程的此类资源
allocations = os_system.resource_manager.resource_allocations.get(process.pid, set())
resources_to_release = [
res for res in allocations
if res.type == res_type
]
for resource in resources_to_release:
os_system.resource_manager.release_resource(process.pid, resource)
print(f"进程 {process.pid} 释放了 {resource_type} 资源")
except KeyError:
print(f"无效的资源类型: {resource_type}")
def create_file(self, process: Process, os_system: Any, filename: str):
"""
在文件系统中创建文件
:param process: 创建文件的进程
:param os_system: 操作系统引用
:param filename: 要创建的文件名
"""
try:
success = os_system.file_system.create_file(filename, process.pid)
if success:
print(f"进程 {process.pid} 创建了文件: {filename}")
else:
print(f"文件 {filename} 创建失败")
except Exception as e:
print(f"创建文件 {filename} 时出错: {e}")
def delete_file(self, process: Process, os_system: Any, filename: str):
"""
从文件系统中删除文件
:param process: 删除文件的进程
:param os_system: 操作系统引用
:param filename: 要删除的文件名
"""
try:
success = os_system.file_system.delete_file(filename, process.pid)
if success:
print(f"进程 {process.pid} 删除了文件: {filename}")
else:
print(f"文件 {filename} 删除失败")
except Exception as e:
print(f"删除文件 {filename} 时出错: {e}")
def read_file(self, process: Process, os_system: Any, filename: str, offset: str = '0', size: str = None):
"""
从文件系统中读取文件
:param process: 读取文件的进程
:param os_system: 操作系统引用
:param filename: 要读取的文件名
:param offset: 文件起始字节偏移量
:param size: 要读取的字节数
"""
try:
# 将偏移量和大小转换为整数
offset_bytes = int(offset)
read_size = int(size) if size else None
content = os_system.file_system.read_file(
filename,
process.pid,
offset_bytes,
read_size
)
print(f"进程 {process.pid} 从文件 {filename} 读取: {content}")
except Exception as e:
print(f"读取文件 {filename} 时出错: {e}")
def write_file(self, process: Process, os_system: Any, filename: str, offset: str = '0', content: str = ''):
"""
向文件系统中的文件写入内容
:param process: 写入文件的进程
:param os_system: 操作系统引用
:param filename: 要写入的文件名
:param offset: 文件起始字节偏移量
:param content: 要写入的内容
"""
try:
# 将偏移量转换为整数
offset_bytes = int(offset)
success = os_system.file_system.write_file(
filename,
process.pid,
offset_bytes,
content
)
if success:
print(f"进程 {process.pid} 写入了文件 {filename}")
else:
print(f"文件 {filename} 写入失败")
except Exception as e:
print(f"写入文件 {filename} 时出错: {e}")
def optimize_disk_seek(self, process: Process, os_system: Any, *seek_params):
"""
优化磁盘寻道操作
:param process: 请求磁盘寻道优化的进程
:param os_system: 操作系统引用
:param seek_params: 磁盘寻道优化的参数
"""
try:
# 调用磁盘管理器的寻道优化方法
os_system.disk_manager.optimize_seek_operations()
print(f"进程 {process.pid} 请求了磁盘寻道优化")
except Exception as e:
print(f"磁盘寻道优化失败: {e}")

138
memory_management.py Normal file
View File

@ -0,0 +1,138 @@
from dataclasses import dataclass, field
from typing import List, Dict, Optional, Tuple
import math
class MemoryAllocationStrategy:
"""
内存分配策略
"""
FIRST_FIT = 'first_fit' # 首次适应算法
BEST_FIT = 'best_fit' # 最佳适应算法
WORST_FIT = 'worst_fit' # 最坏适应算法
@dataclass
class MemoryBlock:
"""
表示内存块
"""
start_address: int # 起始地址
size: int # 内存块大小
is_free: bool = True # 是否空闲
process_id: Optional[int] = None # 占用该内存块的进程ID
class MemoryManager:
"""
管理内存分配释放和虚拟内存
"""
def __init__(
self,
total_memory: int = 1024 * 1024, # 默认1MB
page_size: int = 4096, # 4KB页大小
allocation_strategy: str = MemoryAllocationStrategy.FIRST_FIT
):
self.total_memory = total_memory # 总内存大小
self.page_size = page_size # 页大小
self.allocation_strategy = allocation_strategy # 分配策略
# 内存块映射
self.memory_map: List[MemoryBlock] = [
MemoryBlock(0, total_memory)
]
# 虚拟内存的页表
self.page_table: Dict[int, List[Tuple[int, bool]]] = {}
# 缺页跟踪
self.total_memory_accesses = 0
self.page_faults = 0
def allocate_memory(
self,
process_id: int,
memory_size: int
) -> Optional[int]:
"""
为进程分配内存
:param process_id: 请求内存的进程ID
:param memory_size: 要分配的内存大小
:return: 分配的内存起始地址分配失败返回None
"""
# 根据分配策略选择内存分配方法
allocation_method = {
MemoryAllocationStrategy.FIRST_FIT: self._first_fit_allocation,
MemoryAllocationStrategy.BEST_FIT: self._best_fit_allocation,
MemoryAllocationStrategy.WORST_FIT: self._worst_fit_allocation
}.get(self.allocation_strategy)
return allocation_method(process_id, memory_size)
def _first_fit_allocation(
self,
process_id: int,
memory_size: int
) -> Optional[int]:
"""
首次适应内存分配策略
:param process_id: 请求内存的进程ID
:param memory_size: 要分配的内存大小
:return: 分配的内存起始地址分配失败返回None
"""
for i, block in enumerate(self.memory_map):
if block.is_free and block.size >= memory_size:
# 如果内存块大于请求大小,则分割块
if block.size > memory_size:
new_block = MemoryBlock(
block.start_address + memory_size,
block.size - memory_size
)
self.memory_map.insert(i + 1, new_block)
# 更新原内存块
block.is_free = False
block.process_id = process_id
block.size = memory_size
return block.start_address
return None
def _best_fit_allocation(
self,
process_id: int,
memory_size: int
) -> Optional[int]:
"""
最佳适应内存分配策略
:param process_id: 请求内存的进程ID
:param memory_size: 要分配的内存大小
:return: 分配的内存起始地址分配失败返回None
"""
best_block = None
best_block_index = -1
smallest_difference = float('inf')
for i, block in enumerate(self.memory_map):
if block.is_free and block.size >= memory_size:
difference = block.size - memory_size
if difference < smallest_difference:
smallest_difference = difference
best_block = block
best_block_index = i
if best_block:
# 如果内存块大于请求大小,则分割块
if best_block.size > memory_size:
new_block = MemoryBlock(
best_block.start_address + memory_size,
best_block.size - memory_size
)
self.memory_map.insert(best_block_index + 1, new_block)
# 更

162
process_management.py Normal file
View File

@ -0,0 +1,162 @@
import enum
from dataclasses import dataclass, field
from typing import List, Dict, Optional
import time
import heapq
class ProcessState(enum.Enum):
"""操作系统中的进程状态"""
NEW = 0 # 进程刚创建
READY = 1 # 等待被分配到处理器的进程
RUNNING = 2 # 当前正在执行的进程
WAITING = 3 # 等待某些事件的进程I/O、资源分配
TERMINATED = 4 # 已完成执行的进程
@dataclass
class Process:
"""表示操作系统中的进程"""
pid: int
script_path: str
state: ProcessState = field(default=ProcessState.NEW)
priority: int = field(default=0)
arrival_time: float = field(default_factory=time.time)
start_time: Optional[float] = None
completion_time: Optional[float] = None
cpu_time: float = 0.0
waiting_time: float = 0.0
class ProcessManager:
"""
管理进程调度和生命周期
实现多种调度算法
"""
def __init__(self):
self.processes: Dict[int, Process] = {}
self.ready_queue: List[Process] = []
self.next_pid = 1
self.total_processes = 0
def create_process(self, script_path: str, priority: int = 0) -> Process:
"""
创建新进程
:param script_path: 进程脚本路径
:param priority: 进程优先级数字越小优先级越高
:return: 创建的进程
"""
process = Process(
pid=self.next_pid,
script_path=script_path,
priority=priority
)
self.processes[self.next_pid] = process
self.next_pid += 1
self.total_processes += 1
# 将进程移至就绪状态
self._change_process_state(process, ProcessState.READY)
return process
def _change_process_state(self, process: Process, new_state: ProcessState):
"""
改变进程状态并更新相关时间戳
:param process: 要更新的进程
:param new_state: 进程的新状态
"""
old_state = process.state
process.state = new_state
# 跟踪性能指标的计时
current_time = time.time()
if new_state == ProcessState.RUNNING:
process.start_time = current_time
elif new_state == ProcessState.TERMINATED:
process.completion_time = current_time
def schedule_process(self) -> Optional[Process]:
"""
选择并调度要运行的进程
使用基于优先级的抢占式调度
:return: 要运行的进程如果没有就绪进程则返回None
"""
if not self.ready_queue:
return None
# 按优先级对就绪队列排序(数字越小优先级越高)
self.ready_queue.sort(key=lambda p: p.priority)
# 选择最高优先级进程
selected_process = self.ready_queue[0]
self._change_process_state(selected_process, ProcessState.RUNNING)
return selected_process
def terminate_process(self, process: Process):
"""
终止进程并更新其状态
:param process: 要终止的进程
"""
self._change_process_state(process, ProcessState.TERMINATED)
# 如果在就绪队列中,则移除
if process in self.ready_queue:
self.ready_queue.remove(process)
def get_total_processes(self) -> int:
"""
获取已创建的进程总数
:return: 进程总数
"""
return self.total_processes
def calculate_avg_turnaround_time(self) -> float:
"""
计算已完成进程的平均周转时间
:return: 平均周转时间
"""
completed_processes = [
p for p in self.processes.values()
if p.completion_time is not None
]
if not completed_processes:
return 0.0
turnaround_times = [
p.completion_time - p.arrival_time
for p in completed_processes
]
return sum(turnaround_times) / len(turnaround_times)
def calculate_avg_weighted_turnaround_time(self) -> float:
"""
计算平均带权周转时间
带权周转时间 = (完成时间 - 到达时间) / CPU时间
:return: 平均带权周转时间
"""
completed_processes = [
p for p in self.processes.values()
if p.completion_time is not None and p.cpu_time > 0
]
if not completed_processes:
return 0.0
weighted_turnaround_times = [
(p.completion_time - p.arrival_time) / p.cpu_time
for p in completed_processes
]
return sum(weighted_turnaround_times) / len(weighted_turnaround_times)

143
resource_management.py Normal file
View File

@ -0,0 +1,143 @@
from dataclasses import dataclass, field
from typing import List, Dict, Set
import threading
from enum import Enum, auto
class ResourceType(Enum):
"""
表示不同类型的系统资源
"""
PRINTER = auto()
DISK = auto()
MEMORY = auto()
NETWORK = auto()
@dataclass
class Resource:
"""
表示系统资源
"""
id: int
type: ResourceType
is_available: bool = True
current_owner: int = None # 当前使用该资源的进程ID
class DeadlockAvoidanceStrategy:
"""
死锁预防和解决的策略
"""
RESOURCE_ALLOCATION_GRAPH = 'resource_allocation_graph'
BANKER_ALGORITHM = 'banker_algorithm'
class ResourceManager:
"""
管理系统资源分配和死锁预防
"""
def __init__(self):
# 资源池
self.resources: Dict[ResourceType, List[Resource]] = {
ResourceType.PRINTER: [Resource(i, ResourceType.PRINTER) for i in range(3)],
ResourceType.DISK: [Resource(i, ResourceType.DISK) for i in range(2)],
ResourceType.NETWORK: [Resource(i, ResourceType.NETWORK) for i in range(1)],
}
# 跟踪资源请求和分配
self.resource_requests: Dict[int, Set[Resource]] = {}
self.resource_allocations: Dict[int, Set[Resource]] = {}
# 死锁预防
self.allocation_lock = threading.Lock()
self.deadlock_strategy = DeadlockAvoidanceStrategy.BANKER_ALGORITHM
def request_resource(
self,
process_id: int,
resource_type: ResourceType
) -> bool:
"""
为进程请求资源
:param process_id: 请求资源的进程ID
:param resource_type: 要请求的资源类型
:return: 如果资源分配成功返回True否则返回False
"""
with self.allocation_lock:
# 查找指定类型的可用资源
available_resources = [
res for res in self.resources[resource_type]
if res.is_available
]
if not available_resources:
# 没有可用资源
return False
# 分配第一个可用资源
resource = available_resources[0]
resource.is_available = False
resource.current_owner = process_id
# 跟踪资源分配
if process_id not in self.resource_allocations:
self.resource_allocations[process_id] = set()
self.resource_allocations[process_id].add(resource)
return True
def release_resource(
self,
process_id: int,
resource: Resource
):
"""
释放先前分配给进程的资源
:param process_id: 释放资源的进程ID
:param resource: 要释放的资源
"""
with self.allocation_lock:
# 验证进程是否拥有该资源
if (resource.current_owner != process_id or
resource.type not in self.resources):
return
# 标记资源为可用
resource.is_available = True
resource.current_owner = None
# 从分配中移除
if process_id in self.resource_allocations:
self.resource_allocations[process_id].discard(resource)
def detect_deadlock(self) -> bool:
"""
使用资源分配图检测潜在的死锁
:return: 如果检测到死锁返回True否则返回False
"""
# 使用资源分配图进行简单的死锁检测
for process, resources in self.resource_allocations.items():
for resource in resources:
# 检查资源是否循环依赖
if resource.current_owner != process:
return True
return False
def resolve_deadlock(self):
"""
使用资源抢占解决死锁
"""
if not self.detect_deadlock():
return
# 从进程中抢占资源
for process, resources in list(self.resource_allocations.items()):
for resource in list(resources):
self.release_resource(process, resource)
break # 一次释放一个资源

View File

@ -0,0 +1,97 @@
import sys
import time
from typing import List, Dict, Any
from dataclasses import dataclass, field
# 导入其他模块
from process_management import ProcessManager
from memory_management import MemoryManager
from resource_management import ResourceManager
# from file_system import FileSystem
# from disk_management import DiskManager
from command_interpreter import CommandInterpreter
@dataclass
class OperatingSystem:
"""
模拟操作系统核心类
"""
process_manager: ProcessManager = field(default_factory=ProcessManager)
memory_manager: MemoryManager = field(default_factory=MemoryManager)
resource_manager: ResourceManager = field(default_factory=ResourceManager)
# file_system: FileSystem = field(default_factory=FileSystem)
# disk_manager: DiskManager = field(default_factory=DiskManager)
command_interpreter: CommandInterpreter = field(default_factory=CommandInterpreter)
def execute_job_script(self, script_path: str):
"""
通过命令解释器执行作业脚本
:param script_path: 作业脚本文件路径
"""
try:
# 读取并解析脚本
with open(script_path, 'r') as script_file:
script_lines = script_file.readlines()
# 为脚本创建作业/进程
job = self.process_manager.create_process(script_path)
# 解释并执行命令
for line in script_lines:
line = line.strip()
if line:
self.command_interpreter.execute_command(line, job, self)
# 完成进程
self.process_manager.terminate_process(job)
except Exception as e:
print(f"执行作业脚本 {script_path} 时出错: {e}")
def run_system(self, job_scripts: List[str]):
"""
并发运行多个作业脚本
:param job_scripts: 要执行的脚本路径列表
"""
# 模拟并发作业处理
for script in job_scripts:
try:
self.execute_job_script(script)
except Exception as e:
print(f"作业 {script} 出错: {e}")
# 计算并显示系统性能指标
self.display_system_performance()
def display_system_performance(self):
"""
显示整体系统性能指标
"""
print("\n--- 系统性能指标 ---")
print(f"总进程数: {self.process_manager.get_total_processes()}")
print(f"平均周转时间: {self.process_manager.calculate_avg_turnaround_time():.2f}")
print(f"平均带权周转时间: {self.process_manager.calculate_avg_weighted_turnaround_time():.2f}")
print(f"缺页率: {self.memory_manager.calculate_page_fault_rate():.2%}")
# print(f"磁盘寻道优化: {self.disk_manager.get_seek_optimization_metric()}")
def main():
# 创建操作系统实例
os_sim = OperatingSystem()
# 模拟作业脚本
job_scripts = [
'job1_script.txt',
'job2_script.txt',
'job3_script.txt'
]
# 运行操作系统模拟
os_sim.run_system(job_scripts)
if __name__ == '__main__':
main()